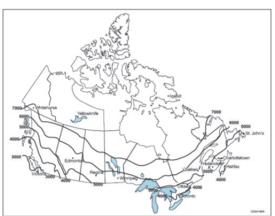
Product Information Bulletin 336

NECB 2015 Plasti-Fab EPS Product Solutions

Product Information Bulletin


BULLETIN NO.	336
ISSUED:	March 27, 2019
REPLACES:	March 30, 2017

NECB 2015 - Plasti-Fab EPS Product Solutions

Page 1 of 4

The National Energy Code for Buildings 2015 (NECB 2015) provides minimum requirements for the design and construction of energy efficient buildings. The NECB 2015 does not apply to farm buildings nor to housing and smaller buildings covered in National Building Code of Canada 2010 (NBC 2010), Division B, Part 9.

The NECB 2015 is an objective-based National Model Code that can be adopted by provincial and territorial governments in Canada. NECB 2015, Division B provides prescriptive, tradeoff or performance compliance options based upon the climatic zones that buildings are located in. This bulletin summarizes Plasti-Fab® expanded polystyrene (EPS) insulation solutions that can be used to comply with the prescriptive requirements for use for building assemblies complying with NECB 2015, Division B, Section 3.2., **Prescriptive Path**.

NECB 2015, Appendix Figure A-1.1.4.1.(1) – Contour Map of Approximate Annual Heating Degree Days

Table 1 provides annual heating degree days (HDD) for some specific locations in Canada from NBC 2010, Division B, Appendix C, Climatic Information.

Table 1 - Heating Degree Days (HDD) for Building Locations

Location	HDD	Zone	Location	HDD	Zone	Location	HDD	Zone
Victoria, BC	2,650	4	Banff, AB	5,500	7a	Toronto, ON	3,520	5
Chilliwack, BC	2,780	4	Edmonton, AB	5,120	7a	Ottawa, ON	4,440	6
Abbotsford, BC	2,860	4	Fort McMurray, AB	6,250	7b	Sault Ste. Marie, ON	4,960	6
Vancouver, BC	2,950	4	Fort Chipewan, AB	7,100	8	North Bay, ON	5,150	7a
Duncan, BC	2,980	4	Moose Jaw, SK	5,170	7a	Timmins, ON	5,940	7a
Nanaimo, BC	3,000	5	Regina, SK	5,600	7a	Montréal, QC	4,200	6
Kelowna, BC	3,400	5	Saskatoon, SK	5,700	7a	Trois-Rivières, QC	4,900	6
Whistler, BC	4,180	6	Prince Albert, SK	6,100	7b	Québec, QC	5,080	7a
Golden, BC	4,750	6	Uranium City, SK	7,500	8	Gaspé, QC	5,500	7a
Mackenzie, BC	5,550	7a	Winnipeg, MB	5,670	7a	Baie-Comeau, QC	6,020	7b
Glacier, BC	5,800	7a	Flin Flon, MB	6,440	7b	Schefferville, QC	8,550	8
Lethbridge, AB	4,500	6	Thompson, MB	7,600 8 Dawson, Yukon		8,400	8	
High River, AB	4,900	6	Windsor, ON	3,400	5	Inuvik, NWT	10,050	8
Calgary, AB	5,000	7a	Hamilton, ON	3,460	5	Alert, Nunavut	13,200	8

NECB 2015 - Plasti-Fab EPS Product Solutions Product Information Bulletin 336

Page 2 of 4

Prescriptive requirements for the thermal characteristics of above-ground building assemblies provided in NECB 2015, Division B, Section 3.2 are expressed as **overall thermal transmittance** (U-value). U-value is the rate, in $W/(m^2 \cdot K)$, at which heat is transferred through a building assembly that is subject to a temperature difference and represents the amount of heat transferred through a unit area in a unit of time induced under steady-state conditions by a unit temperature difference between the environments on its two faces.

U-value is the inverse of *effective thermal resistance* (RSI_{eff}), in (m²·K)/W, of a building assembly representing the resistance to heat transfer. RSI_{eff} calculated using the formula below provided for NBC 2010, Section 9.36, includes the effect of thermal bridging due to repetitive structural members such as wood framing members in walls.

$$RSI_{eff}(R_{eff}) = \frac{100\%}{\frac{\% \text{ Area of Framing}}{RSI_{F}(R_{F})} + \frac{\% \text{ Area of Cavity}}{RSI_{C}(R_{C})}} + RSI(R) \text{ Continuous Material Layers}$$

Table 2 provides maximum U-value from NECB 2015, Division B, Table 3.2.2.2. with equivalent RSI_{eff} (R_{eff}) for opaque above grade wall and roof assemblies.

Table 2 – Maximum Overall Thermal Transmittance for Above-Ground Opaque Wall & Roof Assemblies

Climate Zone	Zor	ie 4	Zone 5		Zor	ne 6	Zon	e 7a	Zon	e 7b	Zone 8	
Cilillate Zone	< 3,	000	3,000 to 3,999		4,000 t	4,000 to 4,999		5,000 to 5,999		o 6,999	≥ 7,000	
Assembly		Maximum Overall Thermal Transmittance - W/(m²•°C)										
Walls	0.3	15	0.278		0.247 0.2		10 0.210		10	0.183		
Roofs	0.2	27	0.183		0.183		0.162		2 0.16		0.142	
				Mini	mum Ef	fective 1	Thermal	Resista	nce ¹			
Climate Zone	Zor	ie 4	Zon	Zone 5 Zone 6 Zone 7a			e 7a	Zon	e 7b	Zor	ie 8	
Unit of Measure	RSI _{eff}	R _{eff}	RSI _{eff}	R _{eff}	RSI _{eff}	R _{eff}	RSI _{eff}	R _{eff}	RSI _{eff}	Reff	RSI _{eff}	Reff
Walls	3.17	18.0	3.60	20.4	4.05	23.0	4.76	27.0	4.76	27.0	5.46	31.0
Roofs	4.41	25.0	5.46	31.0	5.46	31.0	6.17	35.1	6.17	35.1	7.04	40.0

Note:

The minimum RSI_{eff} (R_{eff}) values in Table 2 for roofs can be achieved using Plasti-Fab EPS insulation. Table 3 provides examples of roof assemblies using continuous Plasti-Fab EPS insulation above a steel roof deck to meet NECB 2015 minimum RSI_{eff} (R_{eff}) requirements.

Table 3 – Plasti-Fab EPS Product Solutions for Roof Assemblies

Roof Assembly		Zone 4 Roof System	Zone 5 & 6 Roof System	Zone 7a & 7b Roof System	Zone 8 Roof System	
Outside Air Film		0.03	0.03	0.03	0.03	
Roof Membrane		Nil	Nil	Nil	Nil	
Cover Board	Cover Board		0.03 0.03		0.03	
Plasti-Fab EPS Insulation Solution		4.24	5.29	6.00	6.87	
Vapour Barrier		Nil	Nil	Nil	Nil	
Metal Roof Deck		Nil	Nil	Nil	Nil	
Inside Air Film		0.11	0.11	0.11	0.11	
RSI _{eff}	(m ² •°C)/W	4.41	5.46	6.17	7.04	
R _{eff}	R _{eff} (ft ² •hr•°F)/Btu		31	35	40	

Notes:

- 1. RSI for component materials in above calculations are as per the NBC 2010, Division B, Table A-9.36.2.4.(1)-D.
- To convert Plasti-Fab EPS Insulation Solution RSI in the table above expressed in (m²•°C)/W, to R-value, expressed in (ft²•hr•°F)/Btu, multiply by 5.678263.
- 3. Table 6 provides thermal resistance (RSI/R) values for Plasti-Fab continuous EPS insulation options.

^{1.} RSI_{eff} expressed in (m²•°C)/W and R_{eff} expressed in (ft²•hr•°F)/Btu.

NECB 2015 - Plasti-Fab EPS Product Solutions Product Information Bulletin 336 Page 3 of 4

Table 4 provides Plasti-Fab EPS insulation solutions that can be used to meet NECB 2015 minimum RSI_{eff} (R_{eff}) requirements for above grade wall assemblies built using wood frame construction.

Table 4 - Plasti-Fab EPS Product Solutions for Above Grade Wood-Frame Wall Assemblies

Wall Option Description	NECB Climate Zone	Minimum RSI _{eff} (R _{eff})	Base Wall ¹ RSI _{eff} (R _{eff})	RSI (R) Plasti-Fab Insulation
Wall Options with Plasti-Fab Continuous EPS Insula	tion ²			
Option A	4	3.17 (18.0)		1.27 (7.2)
Base wall - 2 x 4 wood studs @ 406 mm (16") on	5	3.60 (20.4)	1.90 (10.8)	1.70 (9.6)
center with RSI-2.29 (R-13) cavity insulation	6	4.05 (23.0)		2.15 (12.2)
	5	3.60 (20.4)		0.90 (5.1)
Option B Reco well 2 x 6 wood stude @ 406 mm (46") on	6	4.05 (23.0)	2.70 (45.2)	1.35 (7.7)
Base wall - 2 x 6 wood studs @ 406 mm (16") on center with RSI-3.34 (R-19) cavity insulation	7a to 7b	4.76 (27.0)	2.70 (15.3)	2.06 (11.7)
	8	5.46 (31.0)		2.76 (15.7)

Notes:

- 1. RSI_{eff} (R_{eff}) calculations for base wall include contribution from wood studs with cavity insulation plus continuous elements other than Plasti-Fab EPS insulation i.e., outside air film, cladding, gypsum board and inside air film.
- 2. Table 5 provides thermal resistance (RSI/R) values for Plasti-Fab continuous EPS insulation options.

Table 5 provides Plasti-Fab EPS insulation solutions that can be used to meet NECB 2015 minimum RSl_{eff} (R_{eff}) requirements for above grade wall assemblies built using steel stud construction.

Table 5 - Plasti-Fab EPS Product Solutions for Above Grade Steel Stud Wall Assemblies

Wall Option Description	NECB 2015 Climate Zone	Minimum RSI _{eff} (R _{eff})	Base Wall ¹ RSI _{eff} (R _{eff})	RSI (R) Plasti-Fab Insulation
Wall Options with Plasti-Fab Continuous EPS Insula	tion ²			
	4	3.17 (18.0)		1.62 (9.2)
Option A Base wall - 2 x 4 steel studs @ 406 mm (16") on center with RSI-2.47 (R-14) cavity insulation	5	3.60 (20.4)	1 55 (0 0)	2.05 (11.6)
	6	4.05 (23.0)	1.55 (8.8)	2.50 (14.2)
	7a to 7b	4.76 (27.0)		3.21 (18.2)
	4	3.17 (18.0)		1.14 (6.5)
Option B	5	3.60 (20.4)		1.57 (8.9)
Base wall - 2 x 6 steel studs @ 406 mm (16") on	6	4.05 (23.0)	2.03 (11.5)	2.02 (11.5)
center with RSI-3.52 (R-20) cavity insulation	7a to 7b	4.76 (27.0)		2.73 (15.5)
	8	5.46 (31.0)		3.43 (19.5)

Notes:

- 1. RSI_{eff} (R_{eff}) calculations for base wall include contribution from steel studs with cavity insulation plus continuous elements other than Plasti-Fab EPS insulation i.e., outside air film, cladding, gypsum board and inside air film.
- 2. Table 6 provides thermal resistance (RSI/R) values for Plasti-Fab continuous EPS insulation options.

Table 6 – RSI (R-value) Plasti-Fab Continuous EPS Insulation Options

Plasti-Fab Continuous EPS Insulation Option	RSI (R) Unit of Thickness
PlastiSpan [®] or DuroFoam [®] insulation	RSI-0.65 per 25 mm (R-3.75 per inch)
PlastiSpan HD or DuroFoam Plus insulation	RSI-0.70 per 25 mm (R-4.04 per inch)
EnerSpan [®] insulation	RSI-0.82 per 25 mm (R-4.7 per inch)

NECB 2015 - Plasti-Fab EPS Product Solutions Product Information Bulletin 336 Page 4 of 4

Table 7 provides maximum U-value from NECB 2015, Division B, Table 3.2.3.1. with equivalent RSI_{eff} (R_{eff}) for wall and floor assemblies in contact with the ground.

Table 7 - Maximum Overall Thermal Transmittance for Building Assemblies in Contact with the Ground

Climate Zone	Zoı	те 4	Zo	ne 5	Zo	ne 6	Zor	1е 7а	Zor	ne 7b	Zor	ne 8		
Cililiate Zone	< 3	,000	3,000	3,000 to 3,999 4,000 to 4,999		5,000	5,000 to 5,999		6,000 to 6,999		≥ 7,000			
Assembly	mbly Maximum Overall Thermal Transmittance - W/(m²•°C)													
Walls	0.8	568	0.3	379	0.	284	0.	284	0	284	0.2	210		
Floors	0.7	757	0.	757	0.	757	0.757		0.757		7 0.757		0.3	379
				Mini	mum Ef	fective T	hermal	Resista	nce ¹					
Climate Zone	Zor	ıe 4	Zor	ne 5	Zone 6 Zone 7a			Zone 7b		Zone 8				
Unit of Measure	RSI _{eff}	R _{eff}	RSI _{eff}	R _{eff}	RSI _{eff}	R _{eff}	RSI _{eff}	R _{eff}	RSI _{eff}	R _{eff}	RSI _{eff}	R _{eff}		
Walls	1.76	10.0	2.64	15.0	3.52	20.0	3.52	20.0	3.52	20.0	4.76	27.0		
Floors	1.32	7.5	1.32	7.5	1.32	7.5	1.32	7.5	1.32	7.5	2.64	15.0		

Note:

RSI_{eff} expressed in (m²•°C)/W and R_{eff} expressed in (ft²•hr•°F)/Btu.

For foundation wall applications the above requirements apply for walls or parts thereof that are below the exterior ground level and are part of the building envelope. Insulation on walls in contact with the ground must extend 2.4 m down from ground level or to the bottom of the wall, whichever is less.

The above requirements apply to floors-on-ground separating conditioned space from the ground less than 0.6 m below grade. Floors-on-ground with no embedded heating ducts, cables or heating or cooling pipes must have insulation placed on their top or bottom surface for a distance of not less than 1.2 m from their perimeter for Climate Zones 4 to 7b or over their full area for Climate Zone 8. For floors-on-ground with embedded heating ducts or cables or heating and cooling pipes the insulation must be under the full floor area.

The minimum RSI $_{\rm eff}$ (R $_{\rm eff}$) values in Table 7 for walls and floors in contact with the ground can be achieved using Plasti-Fab EPS insulation. Table 6 provides thermal resistance (RSI/R) values for Plasti-Fab EPS insulation options to provide the required effective thermal resistance as per Table 7.